О чем шумят рентгеновские пульсары

Рентгеновские пульсары — это аккрецирующие нейтронные звезды с сильным магнитным полем в тесных двойных системах. В таких объектах вещество звезды-компаньона, захваченное нейтронной звездой, ускоряется гравитационным полем последней до скоростей ~0,5c, достигает поверхности нейтронной звезды и высвечивает практически всю свою энергию (при таких скоростях это ~20% полной энергии покоя) в рентгене. Магнитные поля нейтронных звезд в рентгеновских пульсарах, которые и определяют рентгеновские пульсары как класс объектов, невероятно сильны…

Самые яркие магниты Вселенной: реальность или иллюзия?

Я часто ловлю себя на мысли, что астрофизика — преимущественно наблюдательная наука в том смысле, что теории нередко приходится догонять наблюдения, а удачное наблюдение может взбудоражить и перевернуть целую область. Хорошим примером является неожиданное открытие в 2014 году нейтронных звезд в ультраярких рентгеновских источниках, что перевернуло наше представление о том, насколько яркими могут быть нейтронные звезды, а объяснение этого феномена по-прежнему является вызовом теоретикам. Но давайте по порядку.

Нобелевские пульсары в небе «Аресибо»

Среди множества ярких результатов, полученных на телескопе «Аресибо», есть по крайней мере два открытия нобелевского уровня. Оба связаны с пульсарами. Инструмент благодаря своей высокой чувствительности оказался особенно ценным в изучении этих удивительных объектов — вращающихся нейтронных звезд, излучающих направленные радиолучи, чиркающие по нам на каждом обороте пульсара, подобно лучу маяка.

Новый год в обсерватории «Аресибо»

Мне доводилось вести наблюдения на многих радиотелескопах, в том числе на самых больших — стометровых в Эффельсберге (Германия) и Грин-Бэнке (США), на 70-метровых антеннах центров дальней космической связи в Евпатории и Уссурийске… Это не просто рабочие инструменты, а шедевры инженерного искусства, можно сказать, настоящие его вершины. Кроме того, они просто очень красивы. Но обсерватория «Аресибо» меня потрясла.

Криогенный телескоп воссоздаст зарю Вселенной

Через шесть лет на земную орбиту должна быть запущена российская космическая обсерватория «Миллиметрон» («Спектр-М») с криогенным телескопом миллиметрового и инфракрасного диапазонов длин волн. Работая и в одиночном режиме, и в связке с наземными обсерваториями, «Миллиметрон» позволит исследовать черные и белые дыры, кротовые норы, пульсары, реликтовое излучение, понять структуру Вселенной на заре ее возникновения. Мы поговорили с учеными, участвующими в создании обсерватории.

Живое небо «Ферми»

В свое время я сделал слайд в презентации про черные дыры, где использовался файл в формате MPEG — проигрывался прилет гамма-квантов на некотором куске неба. Это было интересно — вспыхивал яркий блазар, пролетало Солнце, которое тоже излучает гамма-кванты, но это не было красиво. У меня попросту нет никакого опыта в изготовлении мультиков из данных, поэтому на одной из лекций я обратился к аудитории с просьбой о помощи — дескать, нужен волонтер, который помог бы сделать качественный ролик с гамма-квантами…

Пульсары: предсказание, открытие и признание

Открытие пульсаров стало возможным благодаря пятерым сотрудникам Кембриджского университета во главе с одним из пионеров и бесспорных лидеров британской радиоастрономии Энтони Хьюишем. Они работали на радиотелескопе-интерферометре, построеннном в 1967 году по его оригинальному проекту. Хьюиш планировал использовать новый телескоп для детального сканирования небосвода. Его главная цель состояла в поиске квазаров, которые были открыты четырьмя годами ранее, но всё еще не объяснены. Среди его помощников по монтажу мультидипольной антенной решетки телескопа была 24-летняя аспирантка Джоселин Белл.