- Троицкий вариант — Наука - https://trv-science.ru -

Ближайшие пригодные для жизни экзопланеты: где они, как их можно наблюдать и как их достичь

Борис Штерн, докт. физ.-мат. наук, главный редактор газеты «Троицкий вариант — наука», финалист премии «Просветитель»
Борис Штерн, главный редактор ТрВ-Наука

Где мы видим планеты, похожие на Землю?

Год назад было объявлено об открытии планеты земного типа Кеплер-452b у звезды, похожей на Солнце. Планета даже получила прозвище «Земля 2.0», хотя она примерно в пять раз тяжелее Земли. Впрочем, это не помеха для жизни. Главное — она находится в зоне обитаемости, то есть на таком расстоянии от своей звезды, что на ней может быть комфортная температура и жидкая вода. Лишь одно обстоятельство слегка удручает: расстояние до этой системы — 1400 световых лет. Это очень далеко, безнадежно далеко; чуть ниже я объясню, что значит это «безнадежно».

Есть и другие «земли», немного ближе к нам. Вот еще три экзопланеты, составляющие список «лучших».

Кеплер 62 f. Приблизительно 3 массы Земли. Звезда — класса К, меньше и холодней Солнца. Равновесная температура — -30 °С, для привычной нам температуры требуется хорошая атмосфера. Расстояние — 1200 световых лет.

Кеплер 186 f. Планета размером с Землю у красного карлика (класс М). Размер орбиты — как у Меркурия, но тепла получает меньше, чем Земля, — примерно как Марс (равновесная температура — -85 °С). Красные карлики плохи тем, что у них очень активная магнитосфера: верхние слои звезды подвержены сильной конвекции. Из-за этого много жесткого ультрафиолета и сильный звездный ветер, способный ободрать атмосферу. Расстояние — 450 световых лет.

Кеплер 442 b. Раза в два массивней Земли. Звезда — класса К. Поток звездного излучения чуть меньше, чем на Земле (равновесная температура — -40 °С), расстояние — 1100 световых лет.

По поводу температуры требуется уточнение: приведенные цифры — температура черного тела, находящегося в равновесии между поглощением света звезды и собственным излучением. Для Земли она равна (минус!) 24 °C — не разгуляешься. На самом деле средняя температура земной поверхности — +15 °С: работает парниковый эффект. И у тех планет он работает, если есть атмосфера, — всё зависит от ее толщины и насыщенности парниковыми газами. Можно и переборщить — слишком толстая углекислая атмосфера сделает эти планеты невыносимо жаркими. Так что температура поверхности этих планет неизвестна — не верьте новостям в СМИ, где указывается температура поверхности землеподобных планет.

Итак, имеем считанные планеты, с натяжкой годящиеся для жизни, если повезло с атмосферой. И это лучшие из трех с лишним тысяч известных экзопланет в радиусе более тысячи световых лет! Четыре планеты, из которых лишь одна вращается вокруг звезды класса Солнца. Эти данные, казалось бы, обескураживают: лишь одна на почти тысячу из открытых планет пригодна для житья, и то условно. И еще одно грустное обстоятельство: узнать об этих планетах что-нибудь, кроме факта их существования, размеров и параметров орбиты, в обозримое время будет невозможно. Они слишком далеко. Ни один из строящихся или проектируемых наземных или космических телескопов не в состоянии снять спектр атмосферы планеты размера Земли на таком расстоянии. А без спектра оценить пригодность для жизни невозможно.

Однако не всё так печально! В астрономии важнейшую роль играет эффект селекции (его смысл понятен из названия), который работает против землеподобных планет. Во второй половине 1990-х годов, когда открывались первые экзопланеты, казалось, что подавляющее большинство планетных систем уродливы и бесплодны: они содержат так называемые горячие юпитеры — гигантские планеты на тесных орбитах с периодом обращения в считанные дни, что практически исключает планеты земного типа. Их открытие стало шоком — никто и не предполагал, что такое вообще возможно. Казалось, они повсюду. Но на самом деле доля планетных систем с горячими юпитерами всего лишь около процента (https://arxiv.org/pdf/1205.2273.pdf) — просто их легче всего обнаружить любым методом, особенно спектрометрическим, который был основным до запуска «Кеплера» в 2009 году. Спектрометрический метод основан на том, что скорость звезды вдоль луча зрения колеблется из-за ее движения вокруг общего с планетой центра тяжести. Измеряя колебания скорости по эффекту Доплера, обнаруживаем планету и оцениваем ее массу. Обнаружить таким методом Землю невозможно: колебания скорости Солнца, наведенные Землей, — 10 см/с, что на порядок ниже современных возможностей. Зато горячие юпитеры наводят колебания лучевой скорости в десятки, а то и больше сотни метров в секунду.

Мрачную картину смягчил так называемый метод транзитов: наблюдаем за звездой и ищем периодическое понижение яркости, вызванное прохождением планеты по диску звезды. Земля для внешнего наблюдателя блокирует солнечный свет примерно на одну десятитысячную — это вполне измеримая величина, даже если звезда с планетой находятся в тысяче световых лет. Но большинство планет не проходят по диску звезды, для этого нужна удачная ориентация орбиты. Вероятность такой ориентации — отношение радиуса звезды к радиусу орбиты — для Земли примерно одна двухсотая. Поэтому искать транзиты планет трудно: надо долго наблюдать за большим количеством звезд. Проблему решил космический телескоп «Кеплер», который со своим широким полем зрения и 95-мегапиксельной камерой наблюдал сразу за 200 тыс. звезд. Кеплер был запущен в 2009 году. Экзопланеты пошли косяком, включая небольшие скальные планеты типа Земли. Общий улов «Кеплера» — почти 5 тыс. экзопланет, правда, половина из них считается «кандидатами в экзопланеты» — их еще предстоит подтвердить наблюдениями с наземных телескопов.

Конечно, в статистике «Кеплера» остается сильный эффект наблюдательной селекции в пользу горячих юпитеров и против «земель». Но уже не такой сильный, как в первом методе. Число планет меньше двух радиусов Земли — около двух тысяч. Большая часть из них слишком горячие (больше вероятность транзитов) и крупнее Земли (сильней эффект транзитов). И все-же есть десятки планет в зоне обитаемости, не сильно отличающихся от Земли по размерам. Четыре лучшие перечислены выше.

Поле зрения «Кеплера». Прямоугольники — проекции ПЗС-матриц. Рисунок с сайта «Кеплера», NASA
Поле зрения «Кеплера». Прямоугольники — проекции ПЗС-матриц. Рисунок с сайта «Кеплера», NASA
Телескоп «Кеплер» был запущен в 2009 году. Важный стратегический принцип в подобных наблюдениях — долго смотреть в одно место, чтобы выявить долгопериодические планеты типа Земли. К сожалению, в 2012 году вышел из строя один из четырех гиродинов, что еще не было фатальным, а в 2013-м — второй. Двух гиродинов уже недостаточно, чтобы ориентировать аппарат. Наблюдение избранного участка неба стало невозможным. Поэтому правая часть рис. 1 столь бедна. Тем не менее команде «Кеплера» удалось найти решение, при котором телескоп стабилизировался двумя оставшимися гиродинами и давлением света на панели солнечных батарей. Чтобы препятствовать осевому вращению телескопа, панели должны быть симметрично освещены Солнцем. В этом решении поле зрения «Кеплера» описывает годовой круг в плоскости эклиптики.

Так родилась новая программа телескопа, названная «К2». Она менее эффективна, чем изначальная программа: с движущимся полем зрения можно находить только короткопериодические планеты — до сорока дней. Таких планет в программе «К2» найдено более четырехсот штук. Кроме того, круг наблюдения проходит через центр Галактики — там «Кеплер» может увидеть много интересного, не связанного с экзопланетами.

Где они есть на самом деле?

Очевидно, что «Кеплер» видит лишь малую часть землеподобных планет, и на самом деле где-то есть более близкие. Насколько мала эта наблюдаемая часть? Во-первых, вероятность правильной ориентации орбиты дает множитель 1/200. Во-вторых, «Кеплер» видит только одну тысячную часть неба, правда, самую обильную (он смотрит, точнее, смотрел вдоль ближайшего галактического рукава). Предположим, что он видит одну сороковую часть звезд в радиусе пары тысяч световых лет. Тогда общая доля земель, регистрируемая «Кеплером», — 1/8000. И если в радиусе 1000 световых лет находятся считанные земли «Кеплера», то (извлекаем кубический корень из 1/8000) в радиусе 50 световых лет должны быть считанные пока не найденные подходящие для жизни планеты. А 50 световых лет — уже совсем другое дело!

Джеф Марси — один из первооткрывателей экзопланет. Фото из «Википедии»
Джеф Марси — один из первооткрывателей экзопланет. Фото из «Википедии»
Мы сделали слишком грубую оценку: во-первых, воспользовавшись предположением о пространственной однородности звезд (когда извлекали кубический корень); во-вторых, мы не знаем вероятности, с которой «Кеплер» фиксирует транзит землеподобной планеты у далекой звезды. Аккуратную оценку сделали Erik Petigura, Andrew Howard и Geoffrey Marcy (https://arxiv.org/pdf/1311.6806v1.pdf); самый известный человек из этой тройки — Джеф Марси, один из первооткрывателей экзопланет.

Они подошли к задаче, как и подобает настоящим мужам: переобработали значительную часть данных «Кеплера» и, главное, перед обработкой «подсадили» в эти данные искусственные планеты, смоделировав их транзиты. При обработке неизвестно, где настоящие, а где подсадные планеты; уже потом открываются «секретные протоколы» по подсадным транзитам, определяется, какая их часть пропущена, и отсюда выводится, какова эффективность нахождения настоящих планет того или иного размера с той или иной орбитой, на том или ином расстоянии. Мне этот метод особенно по душе, поскольку много лет назад именно так, с подсадными событиями, мы с коллегами определяли эффективность регистрации гамма-всплесков детекторами гамма-обсерватории «Комптон».

Результат измерения эффективности показан на рис. 1. Земля должна располагаться в нижнем правом углу, где вероятность обнаружения меньше 10% (на месте Земли — менее 3%). Это добавляет к распространенности планет земного типа еще порядок величины, сокращая ожидаемое расстояние до ближайшей земли еще в два с небольшим раза. По нашей очень грубой прикидке, получается 20 с небольшим световых лет. Но авторы работы, цитированной выше, дали более точную оценку, — правда, при этом им пришлось сделать экстраполяцию оттуда, где точки, соответствующие планетам Кеплера, лежат густо, туда, где должна быть Земля. В том районе точек нет из-за большого периода обращения Земли — не хватает числа периодических транзитов для их уверенного выделения. Точный ответ дать трудно, поскольку всегда встает вопрос о границах того, что считать землеподобной планетой. Авторы дают несколько вариантов оценки, приведем следующую: 5,7 +/-2 процента звезд типа Солнца имеют планеты диаметром от одного до двух диаметров Земли на орбитах периодом от 200 до 400 дней (я бы сдвинул интервал орбит на 350- 500 дней, но результат будет близким). Это значит, что ближайшая подобная планета будет чуть ближе, чем дала наша грубая оценка, — где-то от 15 до 20 световых лет. Это замечательно, это очень близко — достаточно близко для прямого наблюдения в обозримом будущем. Более того, это достаточно близко, чтобы когда-нибудь достичь такой планеты, хотя слово «достичь» в данном контексте требует существенного уточнения.

Рис. 1. Результат измерения эффективности обнаружения экзопланет в данных «Кеплера». По вертикали — радиус планеты по отношению к радиусу Земли, по горизонтали — орбитальный период. Точки — часть экзопланет, обнаруженных в данных. Сейчас их существенно больше, но в близкой окрестности Земли по-прежнему нет ни одной. Цвет показывает уровни вероятности обнаружения. Вероятность обнаружения точного аналога Земли — 3%. Из работы https://arxiv.org/pdf/1311.6806v1.pdf
Рис. 1. Результат измерения эффективности обнаружения экзопланет в данных «Кеплера». По вертикали — радиус планеты по отношению к радиусу Земли, по горизонтали — орбитальный период. Точки — часть экзопланет, обнаруженных в данных. Сейчас их существенно больше, но в близкой окрестности Земли по-прежнему нет ни одной. Цвет показывает уровни вероятности обнаружения. Вероятность обнаружения точного аналога Земли — 3%. Из работы https://arxiv.org/pdf/1311.6806v1.pdf

Как их наблюдать?

Можно сказать, что экзопланеты уже косвенно наблюдают, но, чтобы узнать о планете что-то интересное, нужно наблюдать ее напрямую. Очень большие планеты (на грани между планетами и бурыми карликами), которые далеки от своих звезд, уже видят непосредственно. Недавно был предложен самый сенсационный и самый иррациональный способ наблюдения экзопланет: посылка нанозондов с лазерными парусами, которые их сфотографируют и передадут изображение на Землю. О нем мы уже писали, пока хватит. Более рациональные способы так или иначе связаны с телескопами, но здесь есть очень серьезная проблема — засветка поля зрения звездой-хозяйкой. Проблема в том, что Земля для удаленного наблюдателя почти в миллиард раз тусклее Солнца. Она всё еще достаточно ярка на расстоянии нескольких парсеков, чтобы ее можно было увидеть в большой телескоп, не будь рядом звезды. Как побороть засветку?

Во-первых, стоит наблюдать в инфракрасном диапазоне — там звезда тусклее, а планета ярче. Это дает выигрыш на порядки. Кроме того, можно разными способами попытаться убрать свет звезды. Простейший метод — коронограф: помещаем маску в фокальную плоскость телескопа на изображение Солнца и видим в окуляре солнечную корону вокруг черного круга — как при затмении. Есть и «звездные» коронографы. Более продвинутый метод, дающий лучшее угловое разрешение, — нуль-интерферометрия, где звезда гасится за счет деструктивной интерференции ее света, принятого разными зеркалами. Есть проекты наземной нуль-интерферометрии на существующих и строящихся больших телескопах. В этом случае остается проблема атмосферной турбулентности, размывающая изображение. В инфракрасном диапазоне проблема не столь сильна, тем не менее даже с адаптивной оптикой трудно избавиться от гало звезды, из которого очень трудно вытащить маленькую планету.

Поэтому самый перспективный способ прямого наблюдения экзопланет — космический нуль-интерферометр: несколько космических телескопов в десятках метров друг от друга с очень точной фиксацией положения и ориентации. Таких проектов было два: европейский «Дарвин» и американский TPF (Terrestrial Planet Finder). Оба проекта закрыты.

Так мог бы выглядеть спектр Земли, снятый с расстояния 30 световых лет интерферометром «Дарвин» (проект закрыт). Виден кислород (в форме озона), который в таком количестве может быть только биогенным, виден водяной пар в количестве, указывающем на обилие жидкой воды, виден углекислый газ
Так мог бы выглядеть спектр Земли, снятый с расстояния 30 световых лет интерферометром «Дарвин» (проект закрыт). Виден кислород (в форме озона), который в таком количестве может быть только биогенным, виден водяной пар в количестве, указывающем на обилие жидкой воды, виден углекислый газ
Каждый из планировавшихся интерферометров был способен напрямую наблюдать «землю» на расстоянии примерно до 50 световых лет, и не только наблюдать, а снять достаточно качественный спектр — измерить настоящую температуру, определить толщину и состав атмосферы и даже определить, есть ли на планете развитая жизнь, по наличию кислорода. Сейчас мы знаем, что в пределах досягаемости каждого из этих интерферометров должны быть десятки землеподобных планет у звезд классов G и К. Если бы проекты не были закрыты, мы в обозримое время (с точки зрения пенсионера младшего возраста — ко времени, до которого можно дожить, если меньше пить и больше двигаться) могли бы многое узнать о месте человека во Вселенной.

Почему эти проекты закрыты? В самом общем плане — по той же причине, по которой уже более сорока лет на Луну не ступала нога человека и до сих пор не удосужилась ступить на Марс (хотя технология и экономика это позволяют уже давно). Исчезла общественная мотивация, обернувшись в сторону потребления. Есть и более конкретные причины — некая деградация научного сообщества, ведущая к политиканству и подковерной борьбе. Об этом очень эмоционально рассказал упомянутый выше Джеф Марси (www.space.com/11 877-alien-planets-search-canceled-missions-marcy.html). По его словам, в NASA шла жестокая драка за финансирование между командами TPF и SIM (астрометрический проект поиска «земель» у 100 ближайших звезд). При этом TPF раскололся на две версии: TPF-коронограф и TPF-интерферометр, что ослабило позиции всей затеи. Потом появилась идея протолкнуть более дешевый TPF-лайт. Часть людей выступила против по той причине, что тогда будет трудней получить финансирование полномасштабного проекта. В результате метаний и борьбы сгинул весь TPF. Вскоре по схожей причине погиб и SIM. Что случилось с «Дарвином», не знаю, но, видимо, и он пал жертвой внутривидовой борьбы за ресурсы. Сейчас интерес к экзопланетам и вообще к космосу возвращается, в частности, благодаря «Кеплеру». Да и вообще, часть общества, кажется, насытилась и задумалась о звездах. Поэтому есть шанс, что появятся новые проекты, способные напрямую наблюдать новые земли. Но кое-кто до этого уже не доживет.

Как их достичь?

Это удивительно, но достать до экзопланет можно уже при нынешнем уровне технологии. Просто надо отказаться от одной вещи: от требования увидеть результат собственного труда при жизни. Иррациональный, как я мягко охарактеризовал его, проект звездного паруса сформирован именно этим требованием: отсюда и скорость в 0,2 скорости света, и цель — ближайшая звезда, безотносительно к тому, есть ли там к чему стремиться. Как только человек готов что-то делать для следующих поколений, задача упрощается на порядки. Скорость в два процента световой, если мы посылаем зонд без торможения, не проблема для реактора на чистом уране-235 с плазменным двигателем со скоростью истечения под 10 тыс. км/с (в природе есть «плазменные двигатели» с ультрарелятивистским истечением). Если зонд должен тормозить в конце пути, средняя скорость падает до процента световой. В любом случае сотни лет — до ближайших звезд, тысячи лет — до множества разнообразных систем, где, по статистике, обязаны быть планеты, очень похожие на Землю. При этом к неведомому миру прилетает аппарат с большой антенной и мегаваттами мощности, с большими телескопами, способными при близком пролете мимо экзопланеты снять динозавров или слонов, если они вдруг там окажутся, и передать всё на Землю в отличном качестве. Это вовсе не фантастика.

Проблема не в технологии, проблема в человеческом менталитете — как обойтись без прижизненной награды. В одной статье про межзвездный зонд я привел в пример создателей собора Святого Петра, которые вложили в сооружение душу, понимая, что ни они, ни их дети не увидят собора, — дескать, могли же люди работать ради следующих поколений. Кто-то мне ответил в комментариях: «Вот пусть Ватикан и запускает зонд». Шутки шутками, но это неплохо отражает общественную психологию. Ключ к межзвездным перелетам — альтруизм человека, а не та или иная техника.

А может ли на экзопланеты ступить нога человека?

Здесь мы из области околонаучных спекуляций вступаем в зыбкую сферу научной фантастики. Тут я должен признаться, что написал фантастическую книгу как раз о колонизации экзопланеты — деяние для научного работника малореспектабельное, но всё равно полезное. Нельзя сказать, что я разобрался в задаче (чтобы разобраться, надо провести кучу исследований), но в каком-то смысле пропустил ее через себя и кое-что понял из того, о чем раньше не задумывался. Прежде всего — насколько ужасна пропасть, отделяющая нас от экзопланет, даже учитывая оптимистические оценки, приведенные выше. И насколько важно преодолеть эту пропасть. При этом принципиальных препятствий это сделать, похоже, нет. Кроме тех, что заложены в менталитете современного человека.

Итак, ответ положителен: на экзопланету в принципе может ступить нога человека, если человек прибудет туда в виде замороженного эмбриона и будет каким-то образом там выращен. Для этого надо решить огромное количество проблем — от устойчивой сверхпроводимости при температуре не ниже 25−30 К (для магнитной защиты эмбрионов и электроники от космики) до тысячелетней надежности механизмов, от прорыва в искусственном интеллекте до освоения «экстракорпоральной репродукции» млекопитающих. Но в вышеупомянутой книге один из героев говорит: «Любая богоугодная задача имеет по крайней мере одно решение». Возможно, он прав.

Гораздо тяжелей с мотивацией людей и мобилизацией ресурсов. В современном мире нет механизмов выделения средств на такой проект. В своей книге я от отчаяния придумал источник финансирования в виде триллионера-мецената, что-то вроде укрупненного аналога Билла Гейтса. Ничего другого, чтобы не скатиться в полную фальшь, я придумать не смог. И не надо надеяться на альтруизм большинства. Любое демократическое волеизъявление будет против затрат на колонизацию далекой планеты. Надежда, как обычно, только на меньшинство.

А у большинства есть коронный вопрос: зачем всё это надо? «Чтобы сильно понизить шансы на исчезновение разумной жизни в ближайшей окрестности Вселенной», — говорит один из персонажей книги. С ним, похоже, согласен Стивен Хокинг, высказавшийся в том духе, что человечество без экспансии в космос обречено (имея в виду не космологический, а исторический масштаб времени). А в более широком плане — чтобы открыть новые перспективы для эволюции и экспансии жизни.

P. S. Полагаю, что, написав познавательную статью, я заслужил право на прямую рекламу своей НФ-книги на близкую тему. Она называется «Ковчег 47 Либра», ее электронная версия добывается за две минуты и по весьма разумной цене здесь: http://trv-science.ru/product/kovcheg-v-pdf.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Связанные статьи