Да будет светодиод!

Голубые светодиоды. Фото: «Википедия»

Голубые светодиоды. Фото: «Википедия»

Премия 2014 года по физике присуждена «за изобретение эффективных голубых светоизлучающих диодов, позволившее создать яркие и экономичные источники белого света» [1]. Премии удостоились японские физики Исаму Акасаки (Isamu Akasaki) и Хироси Амано (Hiroshi Amano) из Нагойского университета, а также Сюдзи Накамура (Shuji Nakamura), который после ухода из частной фирмы не смог найти работу в японской университетской системе и вот уже 15 лет профессорствует в Калифорнийском университете в Санта-Барбаре.

Светоизлучающие диоды, или просто светодиоды, — это полупроводниковые устройства, преобразующие энергию электрического тока в световое излучение. Этот эффект называется электролюминесценцией. В 1907 году его впервые наблюдал в экспериментах с прохождением тока через кристалл карбида кремния ассистент Гульельмо Маркони и сам впоследствии крупный изобретатель-радиотехник Генри Джозеф Раунд (Henry Joseph Round), а спустя шестнадцать лет независимо переоткрыл сотрудник Нижегородской радиолаборатории Олег Лосев, который, как сейчас ясно, подошел вплотную к изобретению светодиода (см. статью N. Zheludev, 2007. The life and times of the LED — a 100-year history [2]).

Работа светоизлучающих диодов обусловлена процессами в зоне контакта полупроводников с дырочной и электронной проводимостью — это так называемые p-n-переходы, открытые в 1939 году американским инженером Расселом Олом (Russell Ohl). На p-n-переходе возникает электрическое поле, которое создает потенциальный барьер, препятствующий перетеканию электронов в область с дырочной проводимостью, а дырок — в электронную. При наложении внешнего поля со знаком минус на электронной области высота барьера снижается, поэтому электроны и дырки начинают мигрировать сквозь переход навстречу друг другу. Через миллионные доли секунды (или еще быстрее) они рекомбинируют, излучая кванты света. Спектральный состав излучения определяется типом полупроводника. Светодиоды на основе арсенида галлия генерируют инфракрасное и красное излучение, фосфида галлия — желтое и зеленое. Приборы на базе нитрида галлия дают голубое, синее и ультрафиолетовое излучение. Первый в мире красный светодиод изобрел американский физик Ник Холоньяк еще в 1962 году, однако голубые светодиоды появились только спустя три десятилетия.

В полупроводники для создания участков с различными типами проводимости вводят специальные добавки. Так, для получения электронной проводимости нитрид галлия можно легировать кремнием, а для получения дырочной — магнием. Для создания эффективных светодиодов необходимо выращивать бездефектные кристаллы базисного полупроводника, а затем легировать их нужными добавками и в нужных пропорциях. Для нитрида галлия это весьма сложно, поэтому технологии производства светодиодов на его основе появились довольно поздно. Исаму Акасаки начал работать с этим веществом в 1974 году. К середине 1980-х годов он, Хироси Амано и их коллеги разработали недорогой способ получения кристаллов нитрида галлия с высокими оптическими качествами. Для этого они воспользовались методом осаждения вещества на подложку из парогазовой фазы, созданным в первой половине 1970-х. Сходную методику позднее изобрел и Накамура, работавший тогда в японской компании Nichia Chemical Industries. К началу 1990-х годов группы Акасаки и Накамуры разработали технологии получения сплавов нитрида галлия с алюминием или индием и применили их для получения «сандвичей» из нескольких полупроводников с разными типами проводимости (так называемых полупроводниковых гетероструктур). Именно на базе гетероструктур обе группы в первой половине 1990-х создали голубые светодиоды, которые освоила полупроводниковая индустрия.

Устройства на голубых светодиодах распространены очень широко. Их вместе с диодами, дающими другие цвета, используют в полноцветных дисплеях и осветительных приборах. Голубые светодиоды служат также основой светильников иного типа — они возбуждают своим излучением молекулы фосфорных соединений, а те испускают красные и зеленые фотоны, которые смешиваются с голубыми и дают белый свет. Такие светильники обеспечивают световой поток до 300 люменов на ватт электрической мощности (для ламп накаливания этот показатель в лучшем случае составляет 16- 17 лм/Вт), а их КПД может превышать 50%. В производстве они дороже лампочек с вольфрамовыми нитями и газосветных ламп, но их стоимость быстро падает, а доступность растет. Поэтому работы новых нобелевских лауреатов представляют собой не только крупное научно-технологическое достижение, но и реальный инструмент глобальной экономии энергии. Сейчас на освещение тратится 20% мировых электрических мощностей, однако массовое применение светодиодов может уменьшить эту долю до 4% [3].

1. nobelprize.org/nobel_prizes/physics/laureates/2014/

2. orc.soton.ac.uk/fileadmin/downloads/100_years_of_optoelectronics__2_.pdf

3. Полностью статью Алексея Левина см. на сайте «Элементы.Ру» — http://elementy.ru/news?newsid=432 340

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Связанные статьи

Оценить: 
Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5 (Пока оценок нет)
Загрузка...
 
 

Метки: , , , , , , , , , , , , , , , , ,

 

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *